

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-4, September 2011

212

Abstract— The development of framework for safety critical

area what happens, when some part of a system deviates from the

intentions of designer is a critical research issue. When we apply,

HAZOP technique using UML, then, we check the object-oriented

design with a fault-free analysis and design. By mutation analysis

and HAZOP, we find a better optimum result. The mutation

method is a fault-based testing strategy that measures the

quality/adequacy of testing by examining whether the test set (test

input data) used in testing can reveal certain types of faults. This

paper describes the UML-HAZOP technique with mutation based

operator or analysis. Using this, we find more and more optimum

result and solution, when we design our system with UML.

Index Terms—Mutation Analysis, Mutation Testing,

UML-HAZOP, Object-Oriented.

I. INTRODUCTION

In the current scenario, developing software is a lucrative
business globally. Often, the development of object oriented
models using UML notation is attaining more popularity in
the market of software engineering. But along this one major
problem is also concerning with is presence of errors that can
cause some trouble to the user in future. Correction of such
kinds of defects/errors is not a big deal. We can overcome
from these problems, but one truth is also seen that is
recognition of errors and their correction demanding enough
time and money. Nowadays many companies hiring such
professionals, those, who are experts in troubleshooting and
they are paid high for this only. If these defects are not found
out at the right phase of development and delivered to the
client with some defects, resulting the huge loss to the
supplier and his/her brand is also overshadowed.

The mutation method [DeMillo78] is a fault-based testing
strategy that measures the quality/adequacy of testing by
examining, whether the test set (test input data) used in testing
can reveal certain types of faults. Unlike, other fault-based
strategies that directly inject artificial faults into the program,
the mutation method generate simple syntactic deviations
(mutants) of the original program, representing ‘typical’
programming errors. The mutation techniques are used to
examine the adequacy of test data for object-oriented
programs. In object-oriented systems, mutation testing should
also consider the relationships between components even
though it is presently aimed at testing a single method or a
class. [1].

Manuscript received August 22, 2011.

 Manoj Kumar, Research Scholar, UPRTOU, Allahabad, India,
9956010822, (e-mail: iisemanoj@gmail.com).
Dr. Mohammad Husain, Director, AIET, Lucknow, India, 9415459591,

(e-mail: mohd.husain90@gmail.com).

One problem in the design of testing experiment is that real
programs of appropriate size with real faults are hard to find,
and hard to prepare appropriately (for instance, by preparing
correct and faulty versions). Even, when actual programs with
actual faults are available, often these faults are not numerous
enough to allow the experimental results to achieve statistical
significance. Many researchers therefore have taken the
approach of introducing faults into correct programs to
produce faulty versions. The main potential advantage of
mutant generation is that the mutation operators can be
described precisely and thus provide a well-defined,
fault-seeding process. This helps researchers replicate others’
experiments, a necessary condition for good experimental
science. While hand-introduced faults can be argued to be
more realistic, ultimately it is a subjective judgment whether a
given fault is realistic or not. Another important advantage of
mutant generation is that a potentially large number of
mutants can be generated, increasing the statistical
significance of results obtained [2].

The aim of presenting this paper is to noticing the defects
that comes during the early phase of software development
and making sure that the fault free software is delivered to the
user. The purpose of choosing this topic like defects
introduced in the object oriented models expressing UML
notation, because it is triggered/interpreted by man itself.

In this paper, our approach uses the framework for
performing mutation analysis and deviants with
UML-HAZOP technique for evaluating the object-oriented
model. This approach uses HAZOP (hazard and operability
studies) technique – a technique used in the safety critical area
to systematically investigate and record what happens when
some part of a system deviates from the intentions of the
designer. When we apply HAZOP technique using UML then
we checks the object-oriented design with a fault-free analysis
and design (see figure 1).

 Analysis Design

Fig. 1: Analysis & Design Versions of a Class

By this technique, we find a better analysis and design for

real world application. We analyze the design in a better way,
and applying guidewords to them, we identify valid
deviations and then this design to derive by mutation
operators that would give rise to them. If

A Framework for Performing Mutation

Analysis and Deviants

Manoj Kumar, Mohammad Hussain

EmployeeSalary

Name
Address
Designation
Salary

Calculate Salary
Calculate tax

EmployeeSalary

-Name : string
-Address : string
-Designation : string
-Salary : int

+Calculate Salary():int
+Calculate tax(sal,extra_income):double

A Framework for Performing Mutation Analysis and Deviants

213

chased thoroughly, this technique will cover every design
construct and feature. In section II, a review of mutation with
object-oriented techniques is presented. In section III, show
the HAZOP technique. In section IV, we identify the attribute
list of object- oriented constructs. In section V, we evaluate
the mutation operator using UML-HAZOP technique.
Finally, section VI presents conclusion.

II. RELATED WORK

C Roger T. Alexander [3] has proposed a technique for
performing mutation analysis on object-oriented programs by
injecting faults into objects. This technique makes mutation
work for OO software. He showed that reusable libraries of
mutation components can effectively inject plausible faults
into objects that instantiate items from common Java libraries
as well as user defined classes. He designed an object
mutation engine that implements his technique. Chanchal K.
Roy and James R. Cordy [4] propose a new approach for
evaluating clone detecting tools in a controlled way by
borrowing an established technique from the testing
community- mutation based analysis. He has not yet
completed the implementation of the framework; such a
framework can provide concrete and accurate comparative
results for different tools in finding intentionally created code
clones. In this proposed framework, it is not practical to work
with large scale code bases. Sunwoo Kim et al.[1] have
extended the traditional mutation method by proposing a set
of mutation operators that are intended to represent plausible
flaws related to the unique features in object-oriented (Java)
programs. The Class Mutation technique can be used in itself
as a form of object-oriented directed selective mutation
testing or it can be integrated with the conventional mutation
systems. P. Chevalley et al. [5] presents the first prototype
GUI-based tool supporting mutation analysis of Java
programs. The tool implements 26 mutation operators
(including 20 object-oriented specific operators) targeting
various types of plausible faults in a Java program. Two
factors have motivated this tool: first, mutation analysis is a
powerful and computationally expensive fault-based
technique that cannot be considered without the aid of an
efficient tool taking an active part in the automation of the
technique; second, the Java language integrates object
-oriented features that can be the basis for new types of faults
non-existent in procedural languages. Sunwoo Kim et al. [6]
propose the use of a safety technique known as HAZOP
(Hazard and Operability Studies) to rigorously generate
mutation operators for Java. A set of Java mutation operators
is proposed by applying HAZOP to the Java syntax definition
and is compared to the operator sets of current mutation
systems. Janusz GÓRSKI et al. [7] present a method
supporting detection of defects in UML based software
documentation. This method named UML-HAZOP is the
adoption of HAZOP (Hazard and Operability Studies) – a
technique widely applied to safety-related systems, and
concentrates on analyzing “flows” between system’s
components in order to detect anomalies related to these
flows. He describes the method and the results of some
experiments related to its application to two real systems: a
billing system of a telephone exchange and a management
support system. Janusz Górski, Aleksander Jarzębowicz[8]
introduces the UMLHAZOP and presents results of its

validation through a series of case studies and controlled
experiments. He introduces a new technique of software
inspection. It distinguish feature is that it focuses on the UML
models that are produced early during software development.
Another distinguishing feature is that the method is based on
the checklist that can be generated is a systematic way using a
set of HAZOP guidewords. This process of checklists
generation has been automated if the UML models are
important from a common CASE tool.

III. UML- HAZOP METHOD

The HAZOP technique was initially developed to analyze
chemical process systems, but has later been extended to other
types of complex systems including, as examples,
transportation systems and software systems. The HAZOP
process is just one of a large number of different techniques
available to the safety professional for analyzing systems to
identify and prevent hazards. It has the further advantage that
it also identifies and helps to prevent operational problems. A
Hazard and Operability (HAZOP) method is a structured and
systematic examination of a planned or existing process or
operation in order to identify and evaluate problems that may
represent risks to personnel or equipment, or prevent efficient
operation. The HAZOP study should preferably be carried out
as early in the design phase as possible - to have influence on
the design. As a compromise, the HAZOP is usually carried
out as a final check, when the detailed design has been
completed. A HAZOP study may also be conducted on an
existing facility to identify modifications that should be
implemented to reduce risk and operability problems [9].

We use the set of guidewords proposed in the HAZOP
standard [10]. It is shown in Table 1.

Table 1: Generic HAZOP Guidewords

GUIDEWORDS GENERIC INTERPRETATION

NO
The complete negation of the design
intention. No part of the intention is achieved
and nothing else happens.

MORE A quantitative increase.

LESS A quantitative decrease.

AS WELL AS
All the design intention is achieved together
with additions.

PART OF
Only some of the design intention is
achieved.

REVERSE
The logical opposite of the intention is
achieved.

OTHER THAN
Complete substitution, where no part of the
original intention is achieved but something
quite different happens.

EARLY
Something happens earlier than expected
relative to clock time.

LATE
Something happens later than expected
relative to clock time.

BEFORE
Something happens before it is expected,
relating to order or sequence.

AFTER
Something happens after it is expected,
relating to order or sequence.

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-4, September 2011

214

UML-HAZOP [7] is an adoption of HAZOP which focuses
on design defects that are present in UML models. It is mainly
use in UML diagram for defects detection and structured
review method for UML diagram guided by keywords (NO,
MORE, LESS, PART OF etc). It is checklist for UML
diagram (Table2).This technique is useful for analysis. The
method can aim at hazard analysis, in which case, it looks into
dangerous consequences of the considered deviations, or
defect analyses [11]. This technique is suitable for where the
analysis is required and it also use in quality assurance
process.

Table 2: Guide words for UML-HAZOP

GUIDEWORDS GENERIC INTERPRETATION

NO
No part of the intention is achieved and
nothing else happens. No name though
it should be named.

MORE
A quantitative increase, The
multiplicity & no. of classes are too
high.

LESS
A quantitative increase, The
multiplicity & no. of classes are too
low.

AS_WELL_AS
Specific design should not take place,
but it achieved with additional results.

PART_OF
Only some of the intention is achieved,
not yet finished.

REVERSE
Flow of information in wrong
direction, reading the association name
between the classes.

OTHER_THAN
Wrong type of relationship, name
should be changed or removed.

EARLY
Some design make earlier than the
expected design.

LATE
Some design make late than the
expected design.

BEFORE
Some design make before it is
expected, relating to order or sequence.

AFTER
Some design make after it is expected,
relating to order or sequence.

To adopt HAZOP to UML notation, it is necessary to

define which element of particular UML diagrams are
considered as HAZOP ”connection” and “attribute” and
which type of anomaly is suggested by applying a particular
HAZOP guidewords to a particular attribute. As the result, we
obtain checklist that list all possible anomalies of a considered
element of the model [7].

We take an idea from adopted HAZOP:
[a] In the beginning of software development life cycle, we

analyze UML model.
[b] To analyze, if the defected anomalies can have negative

consequences downstream the development process. The
defect of particular interest were design defects (wrong
mapping of real world concepts into a model), violation of
“good practice” (for instances too much responsibility
assigned to a class, too many level of inheritance) or violation
of some system attributes, like performance or security [8].

 Fig. 2: UML-HAZOP Checklist

In figure 2[11], show the checklist of UML-HAZOP
technique for check the defects. Each application of a
HAZOP guideword to an UML entity or attributes results in a
suggestion of a model anomaly. Such candidate anomalies are
subjected to a preliminary analysis with respect to their
credibility and are eventually inserted in the checklists. Some
examples are given in table 2.

IV. ATTRIBUTE OF OBJECT- ORIENTED
CONSTRUCTS

Table3 shows the list of attributes identified for UML
constructs. In the below table 3, we are generally identify the
attribute of UML and we take a these construct in the next
section for mutation.

Table 3: General Attributes of UML Constraints

CONSTRUCTS ATTRIBUTES

Class

• Class names

• Member function

• Member attribute

• Visibility

Association

• Association name

• Multiplicity

• Role name

• Visibility

Generalization

• Parent object

• Child object

• Is_aggregation

Events

• Event name

• Caused_by

• Related action

• Effected member

States

• State name

• Caused_by(Source event)

• isFinal(Boolean type)

V. OUR METHODOLOGY

In figure 3, we give a real life application and make a
design in UML form and then we implement in UML-HAZOP
technique for safety checking and then mutate the operator.
After mutation, we find some fault and we killed those fault

Defects

Checklist

Number of Attributes

Number of Attributes

UML Element

A Framework for Performing Mutation Analysis and Deviants

215

after that we find fault free design. This methodology, we are
implementing for this paper.

 Execute Analysis

Fig. 3: Mutation Analysis Based Framework with
UML-HAZOP Technique

We identify some of mutation operator for UML and we do
not claim that these set of operator is complete as a mutation
operator.

a) Class based mutation operator
b) Association based mutation operator
c) Generalization based mutation operator
d) Event based mutation operator
e) State based mutation operator

A. CLASS

 A class describes a set of objects with similar structure,
behavior and relationships. Classes are defined by a set of
attributes and operations in a class diagram.

 Syntax of Class: The class is shown as a rectangle box

 Fig. 4: Structure of Class

 An attribute describes a range of values that instances of
the class may hold. It is defined by a name and a type.
Additionally, an attribute can have properties like visibility
(to other classes), multiplicity, an initial value and a
property-string that indicates property values.

Visibility name [multiplicity] : type-expression =

initial-value {property-string}

 Operations are specified by a name and a optional list of
arguments.

 Visibility name (eparameterlist) :

return-type-expression {property-string}

Applying these UML-HAZOP’s guidewords to the
attribute ‘class’ produces the following deviants (table 4). An
object is an instance of a class. In UML an object is
represented by a rectangle with one or more compartments
(up to four compartments). The top compartment shows the
name of the object and the name of the class. The other
compartments can be suppressed.

 Fig. 5: An object in UML

An object represents a particular instance of a class and the
same notation is used in collaboration diagrams to represent
roles because roles have instance-like characteristics.

An object represents a particular instance of a class and the
same notation is used in collaboration diagrams to represent
roles because roles have instance-like characteristics.

Table 4: UML-HAZOP Guidewords for the Attribute of Class

Attribute:

Class

Guideword:

NO

Cause: Attribute of instance
does not match the class
member.

Consequences: An object is not
a member of an expected class.

Guideword:

MORE

Cause: Can be use more than
one class.
Consequences: A class has
more/fewer instance than
expected.

Guideword:

PART OF

Cause: Some instance have
extra attribute other than class,
some matching attribute but not
all/some missing.
Consequences: Some of the
class constraints are true, other
are not.

Guideword:

OTHER

THAN

Cause: A class is defined as
friend of another class and its
objects can access private and
protected data members of that
class.
Consequences: An object is a
member of an unintended class.

Guideword:

LESS

Cause: We use only one class.
Consequences: A class has less
than two instance or equal to
one.

Mutation Operator for Class

The clearness of operations those come under class is
changeable. User would not face problem, if we are changing
the behavior of private in a public operator. In the condition if
public operator is going to be private then there is undesirable
changes showing in the behavior of operators. If same
operation name is using in main class and its subclass and that
same operation is calling then function of the main class is
calling first and in that condition there is no requirement of
calling the function of the subclass and this operator being
remain in the subclass [12].

B. Association

 An association defines a relationship between two or
more classes. Binary associations are relationships between
exactly two classes and a n-ary association is an association
between three or more classes.

Syntax:

Fig. 6: Class1 Is Associated With Class2

 HAZOP
Technique

UML
Design

Check by
Mutation
Operator

Killed
Mutant

Fault
Free

Design

Real World
Application

Class Name

Attribute1
Attribute2
Operation1
Operation2

E: Employee

Class Relationship Class

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-4, September 2011

216

The following table shows the deviants in the attributes
‘scope’ and ‘accessibility’ of Name construct. The mutation
operators “replacing SimpleName to QualifiedName (or vice
versa)” and “replacing an access modifier with alternatives”
are derived from the deviants.

Table 5: UML-HAZOP Guidewords for the Attribute of

Association

Attribute:

Association

Guideword:

AS WELL

AS

Cause: When the classes are
not actually an associated. In
That condition, association
will be false and should be
removed from the diagram.

Consequences: It is not
necessary that we take in every
time more or less than one
class.

Guideword:

PART OF

Cause: If association is true
and some extra relationship or
relationship should be
introduced between the actual
classes.
Consequences: Check the
relationship that it is
generalization.

Guideword:

OTHER

THAN

Cause: Relationship between
associations should be correct.
Consequences: If a
relationship is false and a
relationship of different type.
This condition rise, when the
generalization should replace
the association.

 Mutation Operator for Association

Association has several attributes: association name,
multiplicity, role name, visibility. When we change the
behavior between classes, then there is no right association in
that case, we mutate between the classes. By changing the
value, we can mutate the association. An association end
multiplicity may be changed. “1…*” can be converted to “*”.
If the operator results in a weaker constraint, the mutant may
be equivalent. When we change a private operation into a
public one , or relax the multiplicity constraints, The mutant
may be equivalent, if we find the mutation operator’s result in
a weaker restraints. The importance of the default remains in
the model even if a weaker constraint generates an equivalent
mutant. This happens when we change a private operation
into a public one, or relax the multiplicity constraints.
However, even if a weaker constraint generates an equivalent
mutant, the fault is still an important one in the model [12].

C. Generalization

A generalization is shown as a line with a hollow triangle as
an arrowhead between the symbols representing the involved
classifiers.
 The arrowhead points to the symbol representing the
general classifier.

 Syntax:

 Fig. 7: Class2, Class3 and Class4 are generalized by Class1

Table 6: UML-HAZOP Guidewords for the Attribute of
Generalization

 Attribute:

Generalizatio

n

Guideword:

AS WELL

AS

Cause: Two classes are
associated but are not in a
hierarchy.

Consequences: Considered
classes are not really related
with Generalization
relationship. The
relationship is wrong and
should be removed from the
diagram.

Guideword:

MORE

Cause: Classes having all
attribute similar, are made
child class to same parent
class.
Consequences: Some
additional classes are
marked as subclasses; they
shouldn’t take part in this
relationship.

Guideword:

LESS

Cause: Some classes
(present on the diagram or
not) that should take part in
this relationship are not
marked as subclasses.

Consequences: It is not
necessary that every time
more than one class is
generalized or it is not a
concrete class.

Guideword:

OTHER

THAN

Cause: Objects of two
classes are not really related
through hierarchy. They are
related in some other way.
Consequences: Wrong
type of relationship. A
relationship of another type
should be defined e.g.
association instead of
generalization.

Mutation Operator for Generalization

Wrong Generalized Tree: There is no guarantee that
when we decompose a problem then we shall find a better
result. If decomposition is less specific and unfocused way
then we will not get a better result. If we generalized a parent
class to child class and child class to grandchild class and we
are not getting a suitable result then we mutate the grant child
class to all child class. If we get better result then we stop this
mutation otherwise, and we don’t get better result then we
again mutate to grant child class to parent class and again if
find a better result then we stop this exercise, so we mutant
between all classes.

Class1

Class2 Class4 Class3

A Framework for Performing Mutation Analysis and Deviants

217

 Fig. 8: Wrong Generalization Tree

 D. Events

 Every event is a unique occurrence.

 Syntax:

Fig. 9: Event classes and attributes

Table 7: UML-HAZOP Guidewords for the Attribute of
Event

Attribute:

Event

Guideword:

NO

Cause: Object of derived class
calls the base class method and
the method of same name is
also in derived class (method of
parent class is overridden by
child class function).

Consequences: Event not
received by control system,
either it occurs but is not
transmitted to the controller
because of sensor or other
failure, or it does not occur
even though expected.

Guideword:

AS WELL

AS

Cause: Another event is
detected by the control system
as well s the intended event.
Consequences: Two events are
similar.

Guideword:

OTHER

THAN

Cause: An unexpected event is
detected instead of the
expected event.
Consequences: A runtime
error is generated or an
anomalous situation is
occurred. Two events of similar
type exist.

Mutation Operator for Event

Two events that are casually unrelated are said to be
concurrent, they have effect on each other then we change the
state model. If we find a wrong event, then we replace the
event with another event from the state model in same
changeover to this operator’s result. Another operator is
missing event, in that case, we take this operator results in the
remotion of just one event from the original state model [13].
We generate mutation operator our corresponding our

mutation list to each event by removing that event from the
model.

E. States

 A state is drawn as a box with rounded corners. Each
state models a set of possible object values that have similar
behavior - but possibly different attribute values. A state is in
a different box if objects in these states behave differently.
 Syntax:

Fig. 10: State diagram

Table 8: UML-HAZOP Guidewords for the Attribute of
States

Attribute:

State

Guideword:

NO

Cause: Object use the
values or access the
methods of the class, to
which it is not related in a
meaningful way.

Consequences Object not in
expected state

Guideword:

OTHER

THAN

Cause: Object tries to copy
the state of other object and
both objects are not
associated to each other.
Consequences: Object in an
unexpected state

Mutation Operator for States

Incorrect state operator can be exchanged from on state to
another thus result can also be modeled in the right state. In
the case of missing operator state, one state can be converted
into original or right state. If state is not starting from the right
one, in that case starting state is impulse. Next operator is
incorrect action. If action is not correct in the state model then
mutating one action into another.

Another operator is change guard condition, this operator is
not resulting the right guard expression, in that case
expression of corresponding guard condition is to be set in the
state [13].

VI. CONCLUSION & FUTURE SCOPE

Software analysis and designing is one of the most crucial
tasks in the software development process. If we are not
giving more emphasis on this step, then we have problems
related to money as well as time constraints. Developing of
object oriented models using UML notation is attaining more
popularity in the market of software engineering. The aim of
presenting this paper is to notice the defect that comes during
the early phase of software development and making sure that
the fault free software is delivered to the user. The purpose of
choosing this topic like, defects introduced in the object
oriented models, expressing UML notation, because it is
triggered/interpreted by man itself.

In this paper, our approach uses the framework for
performing mutation analysis and deviants with
UML-HAZOP technique for evaluating the object-oriented
model. This approach uses HAZOP (hazard and operability
studies) technique – a technique used in the

 PC

 CC2 CC1

 GCC2

event(arg1,arg2,arg3)
event(arg1,arg2)
Digit dialed(arg1)

State1 State2 State3

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-4, September 2011

218

safety critical area to systematically investigate and record
what happens when some part of a system deviates from the
intentions of the designer. When we apply HAZOP technique
using UML then we checks the object-oriented design with a
fault-free analysis and design.

By the application of this technique, we find a better
analysis and design for real world applications. We analyze
the design in a better way and applying guidewords to them,
we identify valid deviations and then this design to derive by
mutation operators that would give rise to them. If chased
thoroughly, this technique will cover every design construct
and feature. In future, by this technique, we can solve the
problem when we developing our application in
object-oriented form.

REFERENCES

[1] S. Kim, J. A. Clark & J. A. McDermid, “Class Mutation: Mutation
 Testing for Object - Oriented Programs”, in Net. Object Days
 Conference on Object - Oriented Software Systems, 2000.
[2] J. H. Andrews, L .C. Briand and Y. Labiche, “Is Mutation An
 Appropriate Tool for Testing Experiments”, Proceeding
 27th International Conference on Software Engineering, St Louis,
 USA, 2005, pp. 402-411.
[3] R. T. Alexander, J. M. Bieman, S. Ghosh, Bixia Ji, “Mutation of Java
 Objects”, To appear in Proc. IEEE International Symposium
 Software Reliability Engineering (ISSRE), 2002.
[4] C. K. Roy, J. R. Cordy, “Towards a Mutation -Based Automatic
 Framework for Evaluating Code Clone Detection Tools”, ACM
 International Conference Proc. Series, Volume: 273, Publisher: ACM
 Press, pp 137-140, 2008.
[5] P. Chevalley, P. Th´evenod-Fosse, “A Mutation Analysis Tool for Java
 Programs”, International Journal Software Tools Technology
 Transfer , 2003.
[6] S. Kim, J. A. Clark, and J. A. McDermid, “The Rigorous Generation
 of Java Mutation Operators Using HAZOP”, In Proceedings of the
 12th International Conference on Software and Systems Engineering
 and their Applications (ICSSEA’ 99), Paris, France, Dec-1999.
[7] J. Górski, A. Jarzębowicz, “Detecting Defects in Object - Oriented
 Diagrams Using UML - HAZOP”, Foundations of Computing and
 Decision Sciences, Vol. 27, No. 4, 2002.
[8] J. Górski , A. Jarzębowicz, “Development & Validation of a HAZOP
 Based Inspection of UML Models”, 3rd World Congress for
 Software Quality 26-30 Sep- 2005,
[9] M. Rausand, ”HAZOP Hazard and Operability Study”, System
 Reliability Theory (2nd ed), Wiley, pp. 1- 44. 2004.
[10] Ministry of Defense, “HAZOP Studies on Systems Containing
 Programmable Electronics”, Defense Standard 00-58, Parts 1 and 2,
 Issue 2, May 2000.
[11] A Jarzębowicz and J Górski, ”Experimental Comparison of UML-
 HAZOP Inspection & Non – Structured Review”, Found. of
 Computing and Decision Sciences, Vol. 30. No. 1, pp. 29-38, 2005.
[12] Dinh -Trong, S. Ghosh, R. France, B. Baudry, and F. Fleurey. "A
 Taxonomy of Faults for UML Designs", In Proceedings
 of MoDeVa'05 (Model Design and Validation Workshop associated
 to MoDELS'05), Montego Bay, Jamaica, October 2005.
[13] S. B. A. Punuganti, P. k. Pattanaik, S. Prasad, R. Mall, “Model-Based
 Mutation Testing of Object-Oriented Programs”, Proceedings of
 2nd International Conference on IT & Business Intelligence
 (ITBI-10), Nagpur, INDIA, November12–14, 2010.

Manoj Kumar: He is a Research Scholar of
Computer Science & Engineering, Uttar Pradesh
Rajarshi Tandon Open University, Allahabad,
India. He got his M.Tech. Degree in Computer
Science & Engineering and is also an MCA
degree holder. He posses more than 09 years of
experience in teaching and 02 years of software
development experience. Currently, he is actively
engaged in the research work in the field of
Software Engineering. He has also published
books and several research papers.

Prof. (Dr.) Mohd. Husain: Presently working as
Director, AZAD Institute of Engineering and
Technology, Lucknow, India. He Received Ph.D.
Degree from Integral University, Lucknow in
2008 and Master Degree (M.Tech.) from UP
Technical University, Lucknow. He has about 21
years of experience in IT & Academics and 07
years research experience. He has published more
than 130 International and National publications.

	I. INTRODUCTION
	II. Related Work

